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Abstract

Power law correlations for sediment transport in pressure driven channel flow was derived in the pre-

vious work of the authors. Those correlations can be used as predictive tools in the fracturing industry but

they are in implicit forms. New data from slot experiments for fractured reservoir were collected which

enable us to derive correlations in explicit forms and applicable over a wide range of data. In this paper we

present correlations for bed load transport of slurries as a composition of bi-power laws in the proppant and

fluid Reynolds number with exponents and prefactors expressed as logarithmic functions of dimensionless
sedimentation numbers. The bed load transport correlations are very accurate and are apparently the only

such in the published literature.

� 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

A good description of the problem of proppant placement in fractured reservoir in which the
present work is framed can be found in the recent paper by Patankar et al. (2002). Only small
parts of that description need to be repeated here to make this document easy to understand.
Hydraulic fracturing is a process often used to increase the productivity of oil and gas wells. A
fluid–proppant mixture is injected through a well bore to be stimulated, at sufficient pressure to
open a vertical fracture penetrating from the well bore far into the pay zone. Fig. 1 shows the side
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view of the crack. A mound of proppant develops and grows until the gap between the top of the
crack and the mound reaches an equilibrium value; this value is associated with a critical con-
dition. For velocities below critical the mound gets higher and spreads laterally; for larger ve-
locities proppant is washed out until the new equilibrium height and velocity are established (Kern
et al., 1959).
The major objective of this paper is to process the experimental data on proppant transport in

slots from STIM-LAB 1 using the method of correlations. The resultant engineering correlations
for erosion and bed load transport can be used to predict proppant placement in the crack.
The method of correlations applied to real or to numerical experiments is a way to derive

formulas and analytic expressions from the processing of data. Generating correlations from ex-
periments is an old method which many industrial applications are based on but it has come to
have a bad name, viewed as empirical and not fundamental. However, used with care and un-
derstanding of the physics of the problem, correlation method can generate outstanding results. A
good example is the Richardson–Zaki correlation (1954) which is obtained by processing the data
of fluidization experiments. Richardson–Zaki correlation describes the complicated dynamics of
fluidization by drag and is widely used for modeling the drag force on particles in solid–liquid
mixtures.
Our enthusiasm for correlations has to do with the surprising emergence of correlations from

the simplest kind of post-processing of our numerical experiments. We have done lift correlations
for single particle (Patankar et al., 2001a) and for the bed expansion of many particles in slurries
(Patankar et al., 2001b). The procedure we follow is to plot the results of our simulations in log–
log plots of the relevant dimensionless variables. The surprise for us is that these plots frequently
come up as straight lines giving rise to power laws which is not predictable or at least far from
obvious. For example, a single particle will lift-off in a Poiseuille flow at a certain Reynolds
number R ¼ Ud=m for a given settling Reynolds number RG ¼ qfðqp � qfÞgd3=g2. When we plotted
the lift-off criterion from about 20 points we found that R ¼ aRn

G with an intercept a and a slope n
in the log–log plot. The straight lines are impressively straight and we generated such correlations
for lift to equilibrium, for the bed expansion of many particles and in non-Newtonian fluids. The
prediction of the power laws for proppant transport from DNS is verified by the engineering
correlations obtained from experimental data in Patankar et al. (2002). Patankar et al. processed
the data from slot experiments for fractured reservoirs on log–log plots and generated power law

Fig. 1. Sand (proppant) transport in a fractured reservoir (Patankar et al., 2002).

1 STIM-LAB is a research lab in Duncan, OK, which is supported by a consortium of oil production and oil service

companies. STIM-LAB has been collecting data on proppant transport in slots for 15 years.
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correlations with a parameter dependent power. The existence of such power laws is an expression
of self-similarity, which has not yet been predicted from analysis or physics. The flow of dispersed
matter appears to obey those self-similar rules to a large degree (Barenblatt, 1996).
We can get power laws when only two variables are at play; when there are three variables or

more, it would appear that we get different power laws separated by transition regions. This is
certainly the case for the Richardson–Zaki correlation; it has one power law relating the fluidi-
zation velocity to the solids fraction at low Reynolds number, and another at high Reynolds
number with a Reynolds number-dependent transition between. The Richardson–Zaki correlation
is an example of what Barenblatt (1996) calls ‘‘incomplete self-similarity’’ because of the de-
pendence of the power on the Reynolds number, a third parameter. We got such correlations
between three variables for slurries, and from numerical experiments (Choi and Joseph, 2001;
Patankar et al. 2001b, 2002; Pan et al., 2002; Joseph and Ocando, 2002; Joseph, 2002).
Here we encounter the yet more complicated situation in which four or five parameters enter

and we find a new type of solution in bi-power law correlations. The correlations faithfully de-
scribe the erosion and bed load transport in a slot under a wide variety of conditions.

2. Experimental setup

The experimental setup used by STIM-LAB was described thoroughly in Patankar et al. (2002).
Here we provide a brief description of the apparatus used by STIM-LAB where the transport
of proppant in a horizontally oriented slot could be observed. Fig. 2 shows the apparatus

Fig. 2. The experimental setup for proppant transport. Proppant and fluid are added at the left where they enter over

the full height of the slot. Materials exit at the right through perforations (Patankar et al., 2002).
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schematically. Proppant and water enter the 8 mm wide slot through an open end that is 30.5 cm
tall. The proppant and water then move through the 2.44 m length of the slot where they exit via
three 8 mm perforations spaced 7.62 cm apart on the 30.5 cm tall end of the slot. We call attention
to that new experiments were conducted in STIM-LAB where more fluids and proppants were
used. The correlations presented in this paper describe both old and new data very well.
The proppant bed in the experiments is shown in Fig. 3 and the portion show in Fig. 3 is

marked in Fig. 2. There are three distinct zones in the flat bed region. The bottom part of the bed
is immobile; it is a stationary porous medium that supports liquid throughput that might be
modeled by Darcy�s law. Above the immobile bed is a mobile bed in which proppants move by
sliding and rolling or advection after suspension or a combination of these modes. Above the
mobile bed is the clear fluid zone. At steady state the volumetric fluid flow rate Qf and the volu-
metric proppant flow rate Qp in and out of this region are constant. At steady state, these are
equal to the rate at which the fluid and proppant are injected in the slot.
STIM-LAB carried out two types of experiments. In Case 1 only fluid is pumped, QP ¼ 0,

H1 ¼ H2; the particles are immobile. We call Case 1 erosion case. In Case 2 proppants are also
injected, QP 6¼ 0, H1 6¼ H2; there is a mobile bed of height H1 � H2. We call Case 2 bed load

transport case. The channel width W ¼ 7:94 mm. A simplified description of the experiment is that
a bed of proppant is eroded by the flow of water. When proppant is not injected as in Case 1, the
faster the flow of water the deeper is the channel above the proppants. We are seeking to predict
the height above the channel for the given fluid flow rate. In Case 2, we seek to predict both the
clear fluid height as well as the mobile bed height as functions of Qf and Qp. In the experiments the
fluid and the proppant flow rates are controlled and the heights H1 and H2 are measured.

3. Experimental correlations for sediment transport

3.1. Dimensionless parameters

The dimensionless parameters in this problem are listed below:

Fig. 3. Proppant transport in thin fluids at steady state conditions. In Case 1 only fluid is pumped, QP ¼ 0, H1 ¼ H2; the

particles are immobile. In Case 2 proppants are also injected, QP 6¼ 0, H1 6¼ H2; there is a mobile bed of height H1 � H2.

The channel width W ¼ 7:94 mm (Patankar et al., 2002).
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Gravity Reynolds number:

RG ¼
qf ½qp � qf �gd3

g2
: ð1Þ

Gravity Reynolds number for the fluid:

k ¼ g=qf

W 3=2
ffiffiffi
g

p
1

k2

�
¼ q2

f gW
3

g2

�
: ð2Þ

Note that W is constant in the experiments, hence, k can be viewed as the dimensionless form for
the kinematic viscosity of the fluid g=qf .

Fluid Reynolds number based on channel width:

Rf ¼
qf

eVV W
g

¼ qfQf

W g
; where eVV ¼ Qf

W 2
: ð3Þ

Proppant Reynolds number based on channel width:

Rp ¼
qpV W

g
¼

qpQp

W g
; where V ¼ Qp

W 2
: ð4Þ

Particle diameter/channel width d=W .
Height of bed/channel width H=W .

We are seeking correlations between the height of the bed H1=W , H2=W and the prescribed
parameters. The dependence of H1=W and H2=W on the three Reynolds numbers Rf , Rp and RG

arises from the fundamental mechanics, as shown in our previous DNS works. In the process of
fitting the bed load transport data, we found that the presence of the gravity Reynolds number for
the fluid k in the correlations is necessary for satisfactory fitting. Hence, the correlations are in the
form Hi=W ¼ f ðRf ;Rp;RG; kÞ where i ¼ 1, 2. Hi (i ¼ 1, 2) depend on eight dimensional variables
namely qf , qp, d, g, W , Qp, Qf and g. The fundamental dimensions are M (mass), L (length), and T
(time). The Pi theorem indicates that the total number of dimensionless parameters involved
in developing correlations for Hi is six. The number of dimensionless parameters in Hi=W ¼
f ðRf ;Rp;RG; kÞ is five; one less than the number indicated by the Pi theorem. The reason is that d
and W are constant in the experiments, hence, d=W does not appear in the correlations.

3.2. Power law correlations for the erosion case

The erosion case: H1 ¼ H2 ¼ H finds the critical condition of the initial motion of the proppant.
Only fluid is injected in the channel and the particle bed is immobile. There is an equilibrium value
of H corresponding to a given fluid flow rate. When the fluid flow rate is increased beyond the
critical value for a given initial height H , the proppants are eroded from the bed and washed out
until a new equilibrium height H of the clear fluid region above an immobile bed is achieved for
the new flow rate.
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In the erosion case, three dimensionless parameters Rf , H=W , and RG enter the power law
correlation: 2

H=W ¼ aðRGÞRmðRGÞ
f : ð5Þ

The values of a and m are listed in Table 1 as functions of RG. Details of the derivation of the
power law correlations for the erosion case can be found in Patankar et al. (2002).

3.3. Bi-power law correlations for the bed load transport case

Bed load transport is another name for the transport of sediments. In bed load transport, both
fluids and proppants play important roles in determining H1 and H2. Therefore we seek corre-
lations for H1=W and H2=W in terms of Rf and Rp with the coefficients as functions of RG and k. To
create correlations, we need data and a data structure. An example of the way the data is
structured for processing correlations is given for 20/40 Ottawa in water in Table 2 (qf : 10

3 kg/m3,
qp: 2:65	 103 kg/m3, d: 6	 10�4 m, g: 10�3 Pa s, W : 7:94	 10�3 m, RG: 3:50	 103, k: 4:51	 10�4).
We look for correlations in the bi-power law form with five dimensionless parameters involved:

H1

W
¼ c1ðRGÞRm1ðRG;kÞ

f Rn1ðRGÞ
p ; ð6Þ

H2

W
¼ c2ðRGÞRm2ðRG;kÞ

f Rn2ðRGÞ
p : ð7Þ

Following are the procedures we used to achieve the bi-power correlations: (1) Different kinds
of proppant and fluid are used in bed load transport experiments and lead to different values of RG

and k. For each single case, we develop bi-power law correlations of H1 and H2. (2) The prefactors
and exponents in these correlations are functions of RG and k. We implement curve-fitting to find
analytical expression for these coefficients. (3) Curve fitting implies that c1, n1, c2 and n2 can be
reasonably approximated by logarithmic functions of RG. While the trend of m1, m2 is less ob-
vious. (4) We use the predicted c1, n1, c2, and n2 by the logarithmic functions of RG and vary m1, m2

in the bi-power law correlations to match the measured H1 and H2 consistently. The new m1 and
m2 turn out to be also logarithmic functions of RG, but with slopes and intercepts as functions of k.
(5) With the explicit and analytical expressions for all the coefficients in the bi-power law known:

2 Shields�s (1936) curve also gives the critical condition for the initiation of sediment motion. The Shields parameter S
is defined as: S ¼ s=ð½qp � qf �gdÞ, where s is a measure of the shear stress on the particle bed. If we take s ¼ geVV =W , then

S ¼ ððgeVV Þ=ð½qp � qf �gd2ÞÞ ¼ ððRf ½d=w�Þ=ðRGÞÞ. From the Shields�s (1936) curve one obtains S ¼ fs
ffiffiffiffiffi
Rf

p
½d=W �

� �
. Eq. (5),

applicable for proppant transport in narrow channels has W =H as another parameter. Nothing close to the bi-power

law correlations has been put forward for sediment transport.

Table 1

The prefactor aðRGÞ and exponent mðRGÞ in the power law correlations for the erosion case

RG

86.8 521–2:03	 104 1:00	 105

a 0.0294 9.36	 10�4 5.52	 10�4

m 0.618 0.914 0.878
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c1ðRGÞ, c2ðRGÞ, n1ðRGÞ, n2ðRGÞ, m1ðRG; kÞ, m2ðRG; kÞ, we predict H1 and H2 and compare them with
the experimentally measured values. The analytical expressions c1ðRGÞ, c2ðRGÞ, n1ðRGÞ, n2ðRGÞ,
m1ðRG; kÞ and m2ðRG; kÞ can be adjusted to obtain the best fit for H1 and H2. Hence, we obtain the
final form for the analytical expressions: (8)–(13). Then they are inserted to (6) and (7), giving rise
to (14) and (15) as the final form for the bi-power law correlations.
Next, we present the analytical expressions for the prefactors and exponents in the bi-power law

correlations. These expressions are plotted in Figs. 4–7.

c1 ¼ �2:30	 10�4 lnðRGÞ þ 2:92	 10�3; ð8Þ

Table 2

Experimental data for the bed load transport case with 20/40 Ottawa and water

Qp (m
3/s) Qf (m

3/s) Rf Rp H1 (10
�2 m) H2 (10

�2 m) H1=W H2=W

4	 10�5 2.44	 10�4 3.08	 104 1.34	 104 2.3 0.8 2.90 1.01

4.57	 10�5 2.43	 10�4 3.06	 104 1.53	 104 2.6 0.7 3.28 0.88

2.86	 10�5 2.50	 10�4 3.15	 104 9.55	 103 2.3 1 2.90 1.26

1.14	 10�5 2.50	 10�4 3.15	 104 3.81	 103 2.4 1.5 3.02 1.89

1.14	 10�5 3.14	 10�4 3.95	 104 3.81	 103 3 2.1 3.78 2.65

3.43	 10�5 3.05	 10�4 3.84	 104 1.15	 104 2.9 1.5 3.65 1.89

1.14	 10�5 3.15	 10�4 3.97	 104 3.81	 103 3.1 2.3 3.91 2.90

4.57	 10�5 3.03	 10�4 3.82	 104 1.53	 104 3 1.4 3.78 1.76

4	 10�5 3.05	 10�4 3.85	 104 1.34	 104 3 1.5 3.78 1.89

2.86	 10�5 3.06	 10�4 3.86	 104 9.55	 103 2.9 1.6 3.65 2.02

2.28	 10�5 3.06	 10�4 3.86	 104 7.61	 103 2.8 1.7 3.53 2.14

1.71	 10�5 3.15	 10�4 3.97	 104 5.71	 103 3.1 2 3.91 2.52

5.7	 10�6 3.14	 10�4 3.96	 104 1.90	 103 3.5 2.9 4.41 3.65

2.9	 10�6 3.14	 10�4 3.95	 104 9.68	 102 4.1 3.6 5.17 4.54

1.4	 10�6 3.13	 10�4 3.94	 104 4.67	 102 5.1 5 6.43 6.30

4	 10�7 3.12	 10�4 3.93	 104 1.34	 102 5.8 5.7 7.31 7.18

Fig. 4. Prefactors c1 and c2 as logarithmic functions of RG.
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c2 ¼ �1:15	 10�4 lnðRGÞ þ 1:33	 10�3; ð9Þ

n1 ¼ �0:0172 lnðRGÞ � 0:120; ð10Þ

n2 ¼ �7:16	 10�3 lnðRGÞ � 0:304; ð11Þ

m1 ¼ 1:2� 1:26	 10�3k�0:428½15:2� lnðRGÞ�; ð12Þ

m2 ¼ 1:20� 1:30	 10�6k�1:28½11:67� lnðRGÞ�: ð13Þ

From Figs. 4–7, we can see that c1, n1, c2 and n2 can be represented by logarithmic functions of
RG, while m1 and m2 are logarithmic functions of RG with slopes and intercepts as functions of k.
Eq. (12) implies that for any k, the logarithmic curve m1ðRG; k ¼ constantÞ passes through the

Fig. 5. Exponents n1 and n2 as logarithmic functions of RG.

Fig. 6. Exponent m1 as a logarithmic function of RG with the slopes and intercepts as functions of k.
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point ðm1 ¼ 1:2; lnðRGÞ ¼ 15:2Þ. Eq. (13) shows that such a point for m2ðRG; kÞ is ðm2 ¼
1:20; lnðRGÞ ¼ 11:67Þ. In Figs. 6 and 7, we can see the two points.
To obtain satisfactory fitting for the data of bed load transport, we find that c1, n1, c2 and n2

depend on RG, whereas m1 and m2 depend on both RG and k. Following is a possible physical
explanation for such dependence. m1 and m2 are exponents for the fluid Reynolds number and
could be sensitive to the kinematic viscosity of the fluid, g=qf . Note that k is a dimensionless form
of the kinematic viscosity of the fluid. In contrast, the prefactors c1 and c2 and the exponents of
the proppant Reynolds number n1 and n2 are less sensitive to the fluid properties. Hence, k dose
not appear in the expressions for c1, n1, c2 and n2.
In Table 3, the bed load transport experiments with the corresponding RG and k are listed.

Note that the proppant and fluid used in these experiments and their properties can be found in

Fig. 7. Exponent m2 as a logarithmic function of RG with the slopes and intercepts as functions of k.

Table 3

RG and k for bed load transport experiments and the corresponding c1, c2, m1, m2, n1 and n2 predicted by (8)–(13)

RG k c1 c2 n1 n2 m1 m2

27.5 3.96	 10�3 2.16	 10�3 9.99	 10�4 )0.177 )0.331 1.041 1.189

162 3.96	 10�3 1.75	 10�3 7.81	 10�4 )0.207 )0.345 1.064 1.193

173 3.96	 10�3 1.73	 10�3 7.72	 10�4 )0.209 )0.346 1.065 1.193

25.8 2.03	 10�3 2.17	 10�3 1.01	 10�3 )0.176 )0.331 0.987 1.169

107 2.03	 10�3 1.84	 10�3 8.31	 10�4 )0.201 )0.342 1.012 1.175

644 2.03	 10�3 1.43	 10�3 6.09	 10�4 )0.231 )0.357 1.044 1.184

648 4.52	 10�4 1.43	 10�3 6.08	 10�4 )0.231 )0.357 0.904 1.057

2.82	 103 4.52	 10�4 1.09	 10�3 4.26	 10�4 )0.257 )0.369 0.954 1.106

3.50	 103 4.52	 10�4 1.04	 10�3 4.00	 10�4 )0.260 )0.370 0.961 1.113

8.90	 103 4.52	 10�4 8.26	 10�4 2.84	 10�4 )0.277 )0.378 0.993 1.143

1.59	 104 4.52	 10�4 6.92	 10�4 2.12	 10�4 )0.287 )0.383 1.013 1.163

1.28	 104 2.09	 10�4 7.43	 10�4 2.40	 10�4 )0.283 )0.381 0.929 1.070

7.35	 104 2.09	 10�4 3.40	 10�4 2.31	 10�5 )0.313 )0.395 1.012 1.229
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Table 10. c1, c2, m1, m2, n1 and n2 listed in Table 3 are predicted by (8)–(13) corresponding to RG

and k listed in the first and second columns. These c1, c2, m1, m2, n1 and n2 have been plotted in
Figs. 4–7, indicated by points.
Inserting the analytical expressions (8)–(13) into (6) and (7), we get the final form for the bi-

power law correlations:

H1

W
¼ ½�2:30	 10�4 lnðRGÞ þ 2:92	 10�3�R1:2�1:26	10�3k�0:428½15:2�lnðRGÞ�

f R½�0:0172 lnðRGÞ�0:120�
p ; ð14Þ

H2

W
¼ ½�1:15	 10�4 lnðRGÞ þ 1:33	 10�3�R1:2�1:30	10�6k�1:28½11:67�lnðRGÞ�

f R½�7:16	10�3 lnðRGÞ�0:304�
p :

ð15Þ

We emphasize that Eqs. (14) and (15) are explicit and predictive correlations for proppant
transport. By (14) and (15), H1 and H2 can be predicted from the prescribed parameters: qf , qp, d,
g, W , Qp, Qf .
We predict H1=W and H2=W by (14) and (15). In Figs. 8 and 9, we plot the predicted values

against the experimentally measured data. Ideally, all the points should be on the straight-line
y ¼ x. It can be seen that the predicted values are in good agreement with the experimental data.
To test this correlation, experiments were conducted in the slot which is 4.88 m long and 1.22 m

high. (Note that the correlations are extracted from experiments conducted in the slot which is
2.44 m long and 30.5 cm high.) Following are the prescribed parameters for the experiments in
the 4.88 m long slot: 20/40 Ottawa with water, qf : 0:997	 103 kg/m3, qp: 2:645	 103 kg/m3, d:
5:48	 10�4 m, g: 9:98	 10�4 Pa s, W : 7:94	 10�3 m, RG: 2:66	 103, k: 4:52	 10�4.

Fig. 8. The predicted values of H1=W by Eq. (14) versus the experimentally measured values for the cases listed in

Table 3.
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We can see that the agreement between predicted values of H1 and H2 and measured values is
encouraging. It is also noted that Table 4 does not show good agreement between predicted and
measured values of H1 � H2. Such inconsistency can be generated in two ways. First, the mea-
surement of the mobile bed height H1 � H2 is not quite accurate. The total height is fairly reliable
measurement but the traction carpet thickness is subject to interpretation especially at higher rates
where a clear demarcation between the clear layer and the traction carpet is more difficult to see
since some proppant is still transported by viscous forces. The measurements were made by
different observers and variations in the recorded heights could be in the order of one centimeter.
That is in the same order of H1 � H2. Due to such errors, the predicted values of H1 � H2 are not
in good agreement of the measured values. Second, our correlations are derived for the total
heights and the coefficients in the correlations are adjusted to obtain the best fit for H1 and H2.
Therefore, the agreement between predicted and measured values of H1 � H2 is not as good the
agreement for H1 and H2. The first reason has to do with the experimental uncertainty; the second
with the method of processing.

Fig. 9. The predicted values of H2=W by Eq. (15) versus the experimentally measured values for the cases listed in

Table 3.

Table 4

The predicted H1 and H2 in comparison with the measured H1 and H2 in experiments conducted in the slot which is 4.88

m long and 1.22 m high

Rf Rp Predicted

H1=W
Predicted

H2=W
Predicted

H1 (m)

Predicted H2

(m)

Measured H1

(m)

Measured H2

(m)

5.14	 105 1.43	 104 28.81 25.80 0.229 0.205 0.245 0.243

5.70	 105 3.82	 104 24.73 20.14 0.196 0.160 0.202 0.192

J. Wang et al. / International Journal of Multiphase Flow 29 (2003) 475–494 485



The corrlations for H1=W and H2=W are bi-power laws in Rf and Rp with the coefficients as
logarithmic functions of RG and k. In the final form of the correlation, Eq. (14) or (15), eight
fitting parameters are used. These parameters emerge as the intercepts and slopes of the loga-
rithmic function and are not arbitrary. Considering the wide range of experimental data covered
by the correlations, we believe that the number of fitting parameters is reasonable.
Our bi-power law correlations reveal the hidden self-similarity in the flow of dispersed matter.

They are also in a convenient form and applicable to a wide range of data. We believe that our
correlations provide a promising way to predict transport of proppant.

3.4. Logistic dose curve fitting for H1=W and H2=W

The bi-power law correlation gives good prediction of H1=W and H2=W for the bed load
transport case. However, it is not compatible with the erosion case. When Rp approaches zero,
H1=W and H2=W tend to infinity. Therefore we need a different correlation to account for the
transition region from the erosion case to the bed load transport case.
We fit the data for H1=W and H2=W to a logistic dose curve (see appendix in Patankar et al.,

2002 for details) to determine a function valid in the transition region; this fitting effectively
combines the power law for the erosion case and the bi-power law for the bed load transport case.
We seek to determine the function:

H1

W
¼ C1R

M1

f

1

ð1þ ðRp=T1ÞÞN1
ð16Þ

and

H2

W
¼ C2R

M2

f

1

ð1þ ðRp=T2ÞÞN2
: ð17Þ

When Rp ¼ 0 (the erosion case), (16) and (17) reduce to:

H1

W
¼ C1R

M1

f ; ð18Þ

H2

W
¼ C2R

M2

f : ð19Þ

For the erosion case, H ¼ H1 ¼ H2; hence, C1 ¼ C2, M1 ¼ M2 and we recover the power law
correlation H=W ¼ aðRGÞRmðRGÞ

f for the erosion case. When Rp � T1 and Rp � T2, (16) and (17)
reduce to:

H1

W
¼ ðC1T

N1

1 ÞRM1

f R�N1
p ; ð20Þ

H2

W
¼ ðC2T

N2

2 ÞRM2

f R�N2
p : ð21Þ

Therefore, we recover the bi-power law correlations (6) and (7) for the bed load transport case.
Comparing (20) and (21) to (6) and (7), we observe that M1 and M2 should be functions of both

RG and k; hence, the exponent M1 ¼ M2 in the power law correlations for the erosion case should
be functions of RG and k. However, most of the erosion experiments were conducted using water
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at different temperatures and lead to a small range of k (see Table 9); we do not have enough data
to find an analytical expression M1ðRG; kÞ ¼ M2ðRG; kÞ. However, we find that C1, M1, T1, N1, C2,
M2, T2 and N2 can be reasonably approximated by functions of a single variable RG; hence, the
coefficients in (16) and (17) are functions of RG only.
We do not have data for erosion and bed load transport with the same RG (see Tables 9 and 10)

so that we use (16) and (17) to fit data from erosion and bed load transport with different but close
RG:

1. Erosion case with RG ¼ 86:8 and bed load transport case with RG ¼ 109.
2. Erosion case with RG ¼ 521 and bed load transport case with RG ¼ 648.
3. Erosion case with RG ¼ 2:29	 103 and bed load transport case with RG ¼ 2:76	 103.
4. Erosion case with RG ¼ 1:34	 104, 1:45	 104 and bed load transport case with

RG ¼ 1:22	 104.

The results of fitting erosion with RG ¼ 86 and bed load transport with RG ¼ 109 are presented
below:

H1

W
¼ 7:85	 10�3R0:749

f

1

ð1þ ðRp=68:23ÞÞ0:112
ðr2 ¼ 0:951Þ; ð22Þ

H2

W
¼ 7:85	 10�3R0:749

f

1

ð1þ ðRp=59:24ÞÞ0:156
ðr2 ¼ 0:946Þ: ð23Þ

By (22) and (23), H1=W and H2=W are computed and tabulated in Table 5. These computed values
are plotted in Fig. 10 in comparison with the experimentally measured values.

Table 5

Data structure for the combination of erosion case with RG ¼ 86 and bed load transport case with RG ¼ 109. H1=W and

H2=W calculated by Eqs. (22) and (23) are listed in comparison with the experimentally measured values

RG Rf Rp H1=W H2=W Computed H1=W Error Computed H2=W Error

86.8 897 0 1.76 1.76 1.28 0.24 1.28 0.24

86.8 1.18	 103 0 2.52 2.52 1.57 0.90 1.57 0.90

86.8 3.63	 103 0 4.91 4.91 3.63 1.64 3.63 1.64

86.8 1.46	 104 0 10.71 10.71 10.31 0.16 10.31 0.16

86.8 2.57	 104 0 15.12 15.12 15.75 0.39 15.75 0.39

109 5.20	 103 570 2.86 2.30 3.705 0.71 3.29 0.98

109 1.73	 104 1.90	 103 8.18 7.06 8.05 0.018 6.79 0.071

109 8.67	 103 95.1 7.23 6.50 6.32 0.82 6.01 0.25

109 8.67	 103 143 7.17 6.44 6.15 1.04 5.76 0.46

109 8.67	 103 285 5.54 4.80 5.80 0.071 5.30 0.25

109 8.67	 103 571 4.59 3.85 5.43 0.70 4.82 0.96

109 8.67	 103 951 4.28 3.53 5.16 0.76 4.48 0.91

109 8.67	 103 1.14	 103 4.22 3.46 5.06 0.70 4.36 0.81

109 8.67	 103 1.14	 103 4.28 3.53 5.06 0.60 4.36 0.70

109 2.60	 104 1.90	 103 11.98 10.57 10.90 1.16 9.20 1.87

The error is computed by ðcalculated value�measured valueÞ2.
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We can see that the computed H1=W and H2=W are in good agreement with the experimentally
observed values. Cases 2–4 are processed in the same manner and resultant coefficients C1, M1, T1,
N1, C2,M2, T2, N2 and r-squared values are listed in Table 6. Note that in Table 6, we use the RG of
the bed load transport case for the combination of data (Figs. 11–13).

2

2

Fig. 10. (a) Experimental H1=W versus calculated H1=W using (22). (b) Experimental H2=W versus calculated H2=W
using (23).

Table 6

The coefficients in the logistic dose curve fitting of H1=W and H2=W for the data from erosion and bed load transport

with close RG

RG C1 M1 T1 N1 r2 C2 M2 T2 N2 r2

109 7.85	 10�3 0.749 68.23 0.112 0.951 7.85	 10�3 0.749 59.24 0.156 0.946

648 8.56	 10�4 0.924 4.173 0.190 0.987 8.56	 10�4 0.924 31.60 0.319 0.981

2.76	 103 1.84	 10�4 1.080 3.332 0.234 0.964 1.84	 10�4 1.080 9.69 0.300 0.929

1.22	 104 8.94	 10�6 1.361 0.174 0.133 0.945 8.94	 10�6 1.361 5.01 0.278 0.945

We only list the RG of the bed load transport case in the first column.
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σ

Fig. 11. The coefficient C1 ¼ C2 as a function of RG.

Fig. 12. The coefficient M1 ¼ M2 as a function of RG.

Fig. 13. The coefficient T1 and T2 as functions of RG.
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Next we obtain the functions C1ðRGÞ, M1ðRGÞ, T1ðRGÞ, N1ðRGÞ, C2ðRGÞ, M2ðRGÞ, T2ðRGÞ, and
N2ðRGÞ.

C1 ¼ C2 ¼ 6:84R�1:40
G ðr2 ¼ 0:979Þ; ð24Þ

M1 ¼ M2 ¼ 0:413R0:125
G ðr2 ¼ 0:994Þ; ð25Þ

T1 ¼ 1:47	 104R�1:17
G ðr2 ¼ 0:930Þ; ð26Þ

T2 ¼ 862R�0:548
G ðr2 ¼ 0:976Þ: ð27Þ

We use a natural cubic spline to interpolate N1ðRGÞ and N2ðRGÞ and the results are plotted in
Fig. 15. Because we do not have enough data, the spline interpolation is not reliable and could be
significantly changed when more data become available. Such a fitting is at best tentative and is
meant to show that expressions for N1ðRGÞ and N2ðRGÞ could be obtained if we had enough points.
The resultant expressions of the spline interpolation are:

N1 ¼ A1 þ B1RG þ D1R2
G þ E1R3

G ð28Þ
where the values of A1, B1, D1, E1 are listed in the following Table 7:

N2 ¼ A2 þ B2RG þ D2R2
G þ E2R3

G; ð29Þ
where the values of A2, B2, D2, E2 are listed in Table 8.
The final correlations:

H1

W
¼ 6:84R�1:40

G R
0:413R0:125

G

f

1

ð1þ ðRp=ð1:47	 104R�1:17
G ÞÞÞN1ðRGÞ

; ð30Þ

H2

W
¼ 6:84R�1:40

G R
0:413R0:125

G

f

1

ð1þ ðRp=ð862R�0:548
G ÞÞÞN2ðRGÞ

; ð31Þ

where N1ðRGÞ and N2ðRGÞ are expressed in (28) and (29).

Table 7

The coefficients in the spline interpolation for N1ðRGÞ
Range

109–648 648–2:76	 103 2:76	 103–1:22	 104

A1 9.43	 10�2 7.90	 10�2 3.28	 10�1

B1 1.57	 10�4 2.28	 10�4 )4.26	 10�5

D1 1.46	 10�8 )9.47	 10�8 3.27	 10�9

E1 )4.45	 10�11 1.17	 10�11 )8.91	 10�14

Table 8

The coefficients in the spline interpolation for N2ðRGÞ
Range

109–648 648–2:76	 103 2:76	 103–1:22	 104

A2 1.19	 10�1 7.94	 10�2 7.62	 10�1

B2 3.33	 10�4 5.16	 10�4 )2.26	 10�4

D2 3.74	 10�8 )2.46	 10�7 2.28	 10�8

E2 )1.14	 10�10 3.18	 10�11 )6.23	 10�13
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Correlations (30) and (31) can be used to predict H1=W and H2=W with the prescribed pa-
rameters W , qf , qp, d, g, Qf and Qp. These correlations are compatible with both the power law for
the erosion case and the bi-power law for the bed load transport case.
We developed the logistic dose curve by fitting the data for erosion and bed load transport

using Eqs. (16) and (17). The curve should depend on RG and k but we do not have enough data to
determine how it depends on k. This fitting using the dose curve is independent of the previous
power law and bi-power law correlations and the resultant Eqs. (30) and (31) do not reduce
precisely to Eqs. (5), (14) and (15) at the respective limits. The number of fitting parameters
utilized in (30) and (31) is more than in (14) and (15). The reason is that we are not able to find
elegant expressions for N1ðRGÞ and N2ðRGÞ from sparse data (see Fig. 14). We emphasize that the

Fig. 14. The coefficients N1 and N2 plotted against RG.

Fig. 15. Use natural cubic spline to interpolate N1ðRGÞ and N2ðRGÞ.
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logistic dose curve represents a correlation for transition situations between erosion and bed load
transport; it is not as accurate as the power law (5) for erosion or the bi-power law (14) and (15)
for bed load transport.

4. Discussion

In a sense our results here realize the opportunity which is presented by digital technology for
implementing the old tried and true method of correlations to big data sets. Our mantra is ‘‘the
secrets are in the data’’. The same method works well for data from numerical and from real
experiments. We have used the following procedure not only for this but also for other multiphase
flow processes. First we propose candidates for controlling dimensionless parameters and list the
data required to form these numbers in a spreadsheet. Then we identify two parameters and plot
the results of the experiments for those two in log–log plots under conditions in which other
parameters are fixed. We have a good choice when the plots come up as straight lines in the log–
log plot. Here and elsewhere we have had excellent results in this search using the parameters
suggested by making the governing sets of PDEs dimensionless. The results of this kind of power
law processing is that the slopes and intercepts of the straight lines in log–log plots, or the pre-
factors and exponents of the power laws these lines imply, depend on the parameters we have
fixed. When we look at the variation of these parameters, the prefactors and exponents sometimes
are expressible as power laws or logarithmic functions, and sometimes they are not. In any case we
may and do implement curve-fitting procedures for the prefactors and exponents to present ex-
plicit formulas in analytic form for the prediction of future events. Processing of data when the
prefactors and exponents are not expressible by power laws or logarithmic functions, as in the
case of logistic dose curve fitting (see Fig. 15), can be carried out by spline or other type of fitting
algorithm, but accurate fits are obtained only when there are sufficient data.
We might add that the search for the governing dimensionless numbers in multiphase flow is a

way to achieve a deep understanding of the underlying physics. The method of correlations is an
excellent procedure to guide the research because the data does not lie.
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Appendix A

Following tables (Tables 9 and 10) give description to the proppant and fluid used in the
erosion and bed load transport experiments.
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